Math 204

Homework 2.1

- 1) Which of the following DE has the direction field shown in the figure?
 - a) $\frac{dy}{dx} = x^2 y^2$ b) $\frac{dy}{dx} = x$ c) $\frac{dy}{dx} = -2y$ d) $\frac{dy}{dx} = \frac{x}{y}$

- 2) Which of the following DE has the direction field shown in the figure?
 - a) $\frac{dy}{dx} = x^2 y^2$ b) $\frac{dy}{dx} = x$ c) $\frac{dy}{dx} = -2y$ d) $\frac{dy}{dx} = \frac{x}{y}$

3) Use the following direction field to for the differential equation $\frac{dy}{dx} = f(x, y)$ to identify where the function is positive, negative or zero. Is f(x,y) a function of x alone, y alone, or a function of both variables together? Find a function f(x,y) whose vector field looks like this.

- 4) Draw the vector field for $\frac{dy}{dx} = y 1$ and sketch an appropriate solution curves passing through the points
 - a) (0,0)
 - b) (1,2).
- 5) Find the critical points and draw the phase portrait of the given autonomous differential equations. Classify each critical point as asymptotically stable, unstable, or semi-stable. Sketch the equilibrium solutions and typical solution curves in the different regions in the *x*-*y* plane.
 - a) $\frac{dy}{dx} = y^3 y^2$
 - b) $\frac{dy}{dx} = y^3 4y$
 - c) $\frac{dy}{dx} = y^2 3y 10$

1) In problems 1-5 determine whether the given differential equation is separable.

1)
$$\frac{dy}{dx} = \frac{y^2 + y}{x^2 + x}$$

2) $\frac{dy}{dx} = \frac{1}{x(x - y)}$
3) $x \frac{dy}{dx} = ye^{x/y} - x$
4) $\frac{y}{x^2} \frac{dy}{dx} + \cos(x + y) = 0$
5) $(x + 4)dy = (x^2y - 8 + 4x^2 - 2y)dx$

2) In problems 6-10 solve the given differential equation by separation of variables.

6)
$$\frac{dz}{dw} = we^{3w+2z}$$

7) $x \sin^2 y \frac{dy}{dx} = (x+1)^2$
8) $(x + xy^2)dx + e^{x^2}ydy = 0$
9) $(x+1)^2 \ln y \frac{dy}{dx} = \frac{x}{y^2}$
10) $x \frac{dy}{dx} = \frac{x^2 - x - 2}{xy + x + y + 1}$

3) In problems 11-13 solve the given initial value problem.

11)
$$\frac{dy}{dx} = 3x^2 e^{-y}, \quad y(0) = 1$$

12) $\frac{dy}{dx} = \frac{y}{x(x+1)}, \quad y(1) = 3$
13) $y' = 2x \cos^2 y, \quad y(0) = \pi/4$

4) Proceed as in example 5 to find an explicit solution of the given initial value problem.

$$\frac{dy}{dx} = y^2 \sin x^2, \qquad y(-2) = \frac{1}{3}$$

I. In problems 1-6 determine whether the given equation is separable, linear, neither, or both.

1)
$$x^2 \frac{dy}{dx} + \cos x = y$$

2) $\frac{dx}{dt} + xt = e^x$

3)
$$x\frac{dx}{dt} + t^2x = \sin t$$

4)
$$3t = e^t \frac{dy}{dt} + y \ln t$$

5)
$$(t^2 + 1)\frac{dy}{dt} = yt - t$$

6) $3r = \frac{dr}{d\theta} - \theta^3$

II. In problems 7-17 find the general solution of the given differential equation. Give the largest interval *I* over which the solution is defined. Determine whether there are any transient terms in the general solution. $T = \frac{1}{2} \frac{dy}{dx} = \frac{2y}{dx}$

7)
$$\frac{1}{x} \frac{dy}{dx} - \frac{y}{x^2} = x \cos x$$

8) $y' + y = \sqrt{1 + \cos 2x}$
9) $\frac{dr}{d\theta} + r \tan \theta = \sec \theta$
10) $\frac{dy}{dx} = \frac{y}{x} + 2x + 1$
11) $(t + y + 1)dt - dy = 0$
12) $\frac{dy}{dx} = x^2 e^{-3x} - 4y$
13) $4x^3y + x^4y' = \sin^3 x$
14) $ydx - 2(x + y^4)dy = 0$
15) $(x^2 + 1)\frac{dy}{dx} = x^2 + 2x - 1 - 4xy$
16) $\cos^2 x \sin x \frac{dy}{dx} + (\cos^3 x)y = 1$

- III. In problems 17-19 solve the given initial value problem.
 - 17) $xy' + y = e^x$, y(1) = 218) $\sin x \frac{dy}{dx} + y \cos x = x \sin x$, $y\left(\frac{\pi}{2}\right) = 2$ 19) $(x + 1)\frac{dy}{dx} + y = \ln x$, y(1) = 10
- 5) In problem 20 proceed as in example 6 to solve the initial value problem

$$20)\frac{dy}{dx} + 2xy = f(x), \quad y(0) = 2, \quad \text{where } f(x) = \begin{cases} x & 0 \le x < 1\\ 0 & x \ge 1 \end{cases}$$

- I. In problems 1-7 classify the equation as separable, linear, exact, or none of these. Some equations may have more than one classification.
 - 1) $(x^2y + x^4 \cos x)dx x^3dy = 0$
 - $2) \quad xydx + dy = 0$

3)
$$\frac{dy}{dx} = \frac{x-y}{x}$$

- 4) $[2x + \cos(xy)]dx + [\sin(xy) + 2y]dy = 0$
- 5) $y^2 dx + (2xy + \cos y)dy = 0$
- 6) $xyy' = 2xe^{y}$
- 7) $(ye^{xy} + 2x)dx + (xe^{xy} 2y)dy = 0$
- II. In problems 8-14 determine whether the differential equation is exact. If it is exact solve it.
 - 8) $(2xy \sec^2 x)dx + (x^2 + 2y)dy = 0$ 9) $(x^2 - y^2)dx + (x^2 - 2xy)dy = 0$ 10) $(1 + e^x y + xe^x y)dx + (xe^x + 2)dy = 0$ 11) $\left(\frac{t}{y}\right)dy + (1 + \ln y)dt = 0$ 12) $(\tan x - \sin x \sin y)dx + \cos x \cos y \, dy = 0$ 13) $\left(\frac{1}{y}\right)dx - \left(3y - \frac{x}{y^2}\right)dy = 0$ 14) $\left[\frac{2}{\sqrt{1-x^2}} + y\cos(xy)\right]dx + [x\cos(xy) - y^{-\frac{1}{3}}]dy = 0$
- III. In problem 15 and 16 find the value of k so that the equation is exact 15) $(kx^2y + e^y)dx + (x^3 + xe^y - 2y)dy = 0$ 16) $(6xy^3 + \cos y)dx + (2kx^2y^2 - x\sin y)dy = 0$
- IV. In problems 17-19 solve the given differential equation by finding an appropriate integrating factor as in example 4.
 17) (2x² + y)dx + (x²y x)dy = 0

$$18) (y^2 + 2xy)dx - x^2dy = 0$$

 $19)\cos x \, dx + \left(1 + \frac{2}{y}\right)\sin x \, dy = 0$

I. In problems 1-9 solve the following differential equations using an appropriate substitution.

1)
$$\frac{dy}{dx} = y - x - 1 + (x - y + 2)^{-1}$$

2) $(xy + y^2 + x^2)dx - x^2dy = 0$
3) $\frac{dy}{dx} - 5y = -\frac{5}{2}xy^3$
4) $-ydx + (x + \sqrt{xy})dy = 0$
5) $\frac{dy}{dx} = \frac{1 - x - y}{x + y}$
6) $\frac{dr}{d\theta} = \frac{r^2 + 2r\theta}{\theta^2}$
7) $\cos(x + y)dy = \sin(x + y)dx$
8) $3(1 + t^2)dy = 2ty(y^3 - 1)dt$
9) $xdy - y(\ln y - \ln x + 1)dx = 0$

II. In problems 10-12solve the following initial value problem.

$$10) (x + ye^{y/x}) dx - xe^{y/x} dy = 0, \qquad y(1) =$$

$$11) \frac{dy}{dx} = \cos(x + y), \qquad y(0) = \pi/4$$

$$12) \frac{dy}{dx} = \frac{3x + 2y}{3x + 2y + 2}, \qquad y(-1) = -1$$

III. Find a one-parameter family of solutions for the differential equation

$$\frac{dy}{dx} = x^3(y-x)^2 + \frac{y}{x}$$

0

Where $y_1 = x$ is a known solution of the equation.