Math 204

Homework 2.1

1) Which of the following DE has the direction field shown in the figure?
a) $\frac{d y}{d x}=x^{2}-y^{2}$
b) $\frac{d y}{d x}=x$
c) $\frac{d y}{d x}=-2 y$
d) $\frac{d y}{d x}=\frac{x}{y}$

2) Which of the following DE has the direction field shown in the figure?
a) $\frac{d y}{d x}=x^{2}-y^{2}$
b) $\frac{d y}{d x}=x$
c) $\frac{d y}{d x}=-2 y$
d) $\frac{d y}{d x}=\frac{x}{y}$
3) Use the following direction field to for the differential equation $\frac{d y}{d x}=f(x, y)$ to identify where the function is positive, negative or zero. Is $f(x, y)$ a function of x alone, y alone, or a function of both variables together? Find a function $f(x, y)$ whose vector field looks like this.

4) Draw the vector field for $\frac{d y}{d x}=y-1$ and sketch an appropriate solution curves passing through the points
a) $(0,0)$
b) $(1,2)$.
5) Find the critical points and draw the phase portrait of the given autonomous differential equations. Classify each critical point as asymptotically stable, unstable, or semi-stable. Sketch the equilibrium solutions and typical solution curves in the different regions in the $x-y$ plane.
a) $\frac{d y}{d x}=y^{3}-y^{2}$
b) $\frac{d y}{d x}=y^{3}-4 y$
c) $\frac{d y}{d x}=y^{2}-3 y-10$

Homework 2.2

1) In problems 1-5 determine whether the given differential equation is separable.
2) $\frac{d y}{d x}=\frac{y^{2}+y}{x^{2}+x}$
3) $\frac{d y}{d x}=\frac{1}{x(x-y)}$
4) $x \frac{d y}{d x}=y e^{x / y}-x$
5) $\frac{y}{x^{2}} \frac{d y}{d x}+\cos (x+y)=0$
6) $(x+4) d y=\left(x^{2} y-8+4 x^{2}-2 y\right) d x$
7) In problems 6-10 solve the given differential equation by separation of variables.
8) $\frac{d z}{d w}=w e^{3 w+2 z}$
9) $x \sin ^{2} y \frac{d y}{d x}=(x+1)^{2}$
10) $\left(x+x y^{2}\right) d x+e^{x^{2}} y d y=0$
11) $(x+1)^{2} \ln y \frac{d y}{d x}=\frac{x}{y^{2}}$
12) $x \frac{d y}{d x}=\frac{x^{2}-x-2}{x y+x+y+1}$
13) In problems 11-13solve the given initial value problem.
14) $\frac{d y}{d x}=3 x^{2} e^{-y}, \quad y(0)=1$
15) $\frac{d y}{d x}=\frac{y}{x(x+1)}, \quad y(1)=3$
16) $y^{\prime}=2 x \cos ^{2} y, \quad y(0)=\pi / 4$
17) Proceed as in example 5 to find an explicit solution of the given initial value problem.

$$
\frac{d y}{d x}=y^{2} \sin x^{2}, \quad y(-2)=\frac{1}{3}
$$

Homework 2.3

I. In problems 1-6 determine whether the given equation is separable, linear, neither, or both.

1) $x^{2} \frac{d y}{d x}+\cos x=y$
2) $\frac{d x}{d t}+x t=e^{x}$
3) $x \frac{d x}{d t}+t^{2} x=\sin t$
4) $3 t=e^{t} \frac{d y}{d t}+y \ln t$
5) $\left(t^{2}+1\right) \frac{d y}{d t}=y t-t$
6) $3 r=\frac{d r}{d \theta}-\theta^{3}$
II. In problems 7-17 find the general solution of the given differential equation. Give the largest interval I over which the solution is defined. Determine whether there are any transient terms in the general solution.
7) $\frac{1}{x} \frac{d y}{d x}-\frac{2 y}{x^{2}}=x \cos x$
8) $y^{\prime}+y=\sqrt{1+\cos 2 x}$
9) $\frac{d r}{d \theta}+r \tan \theta=\sec \theta$
10) $\frac{d y}{d x}=\frac{y}{x}+2 x+1$
11) $(t+y+1) d t-d y=0$
12) $\frac{d y}{d x}=x^{2} e^{-3 x}-4 y$
13) $4 x^{3} y+x^{4} y^{\prime}=\sin ^{3} x$
14) $y d x-2\left(x+y^{4}\right) d y=0$
15) $\left(x^{2}+1\right) \frac{d y}{d x}=x^{2}+2 x-1-4 x y$
16) $\cos ^{2} x \sin x \frac{d y}{d x}+\left(\cos ^{3} x\right) y=1$
III. In problems 17-19 solve the given initial value problem.
17) $x y^{\prime}+y=e^{x}$,

$$
y(1)=2
$$

18) $\sin x \frac{d y}{d x}+y \cos x=x \sin x, \quad y\left(\frac{\pi}{2}\right)=2$
19) $(x+1) \frac{d y}{d x}+y=\ln x, \quad y(1)=10$
20) In problem 20 proceed as in example 6 to solve the initial value problem
21) $\frac{d y}{d x}+2 x y=f(x), \quad y(0)=2, \quad$ where $f(x)=\left\{\begin{array}{cc}x & 0 \leq x<1 \\ 0 & x \geq 1\end{array}\right.$

Homework 2.4

I. In problems 1-7 classify the equation as separable, linear, exact, or none of these. Some equations may have more than one classification.

1) $\left(x^{2} y+x^{4} \cos x\right) d x-x^{3} d y=0$
2) $x y d x+d y=0$
3) $\frac{d y}{d x}=\frac{x-y}{x}$
4) $[2 x+\cos (x y)] d x+[\sin (x y)+2 y] d y=0$
5) $y^{2} d x+(2 x y+\cos y) d y=0$
6) $x y y^{\prime}=2 x e^{y}$
7) $\left(y e^{x y}+2 x\right) d x+\left(x e^{x y}-2 y\right) d y=0$
II. In problems 8 - 14 determine whether the differential equation is exact. If it is exact solve it.
8) $\left(2 x y-\sec ^{2} x\right) d x+\left(x^{2}+2 y\right) d y=0$
9) $\left(x^{2}-y^{2}\right) d x+\left(x^{2}-2 x y\right) d y=0$
10) $\left(1+e^{x} y+x e^{x} y\right) d x+\left(x e^{x}+2\right) d y=0$
11) $\left(\frac{t}{y}\right) d y+(1+\ln y) d t=0$
12) $(\tan x-\sin x \sin y) d x+\cos x \cos y d y=0$
13) $\left(\frac{1}{y}\right) d x-\left(3 y-\frac{x}{y^{2}}\right) d y=0$
14) $\left[\frac{2}{\sqrt{1-x^{2}}}+y \cos (x y)\right] d x+\left[x \cos (x y)-y^{-\frac{1}{3}}\right] d y=0$
III. In problem 15 and 16 find the value of k so that the equation is exact
15) $\left(k x^{2} y+e^{y}\right) d x+\left(x^{3}+x e^{y}-2 y\right) d y=0$
16) $\left(6 x y^{3}+\cos y\right) d x+\left(2 k x^{2} y^{2}-x \sin y\right) d y=0$
IV. In problems 17-19 solve the given differential equation by finding an appropriate integrating factor as in example 4.
17) $\left(2 x^{2}+y\right) d x+\left(x^{2} y-x\right) d y=0$
18) $\left(y^{2}+2 x y\right) d x-x^{2} d y=0$
19) $\cos x d x+\left(1+\frac{2}{y}\right) \sin x d y=0$

Homework 2.5

I. In problems 1-9 solve the following differential equations using an appropriate substitution.

1) $\frac{d y}{d x}=y-x-1+(x-y+2)^{-1}$
2) $\left(x y+y^{2}+x^{2}\right) d x-x^{2} d y=0$
3) $\frac{d y}{d x}-5 y=-\frac{5}{2} x y^{3}$
4) $-y d x+(x+\sqrt{x y}) d y=0$
5) $\frac{d y}{d x}=\frac{1-x-y}{x+y}$
6) $\frac{d r}{d \theta}=\frac{r^{2}+2 r \theta}{\theta^{2}}$
7) $\cos (x+y) d y=\sin (x+y) d x$
8) $3\left(1+t^{2}\right) d y=2 t y\left(y^{3}-1\right) d t$
9) $x d y-y(\ln y-\ln x+1) d x=0$
II. In problems 10-12solve the following initial value problem.
10) $\left(x+y e^{y / x}\right) d x-x e^{y / x} d y=0, \quad y(1)=0$
11) $\frac{d y}{d x}=\cos (x+y), \quad y(0)=\pi / 4$
12) $\frac{d y}{d x}=\frac{3 x+2 y}{3 x+2 y+2}, \quad y(-1)=-1$
III. Find a one-parameter family of solutions for the differential equation

$$
\frac{d y}{d x}=x^{3}(y-x)^{2}+\frac{y}{x}
$$

Where $y_{1}=x$ is a known solution of the equation.

